314 research outputs found

    A modified EM algorithm for hand gesture segmentation in RGB-D data

    Get PDF

    Large animal models in the study of gynecological diseases

    Get PDF
    Gynecological diseases are a series of diseases caused by abnormalities in the female reproductive organs or breast, which endanger women’s fertility and even their lives. Therefore, it is important to investigate the mechanism of occurrence and treatment of gynecological diseases. Animal models are the main objects for people to study the development of diseases and explore treatment options. Large animals, compared to small rodents, have reproductive organs with structural and physiological characteristics closer to those of humans, and are also better suited for long-term serial examinations for gynecological disease studies. This review gives examples of large animal models in gynecological diseases and provides a reference for the selection of animal models for gynecological diseases

    Direct fabrication of high-performance high speed steel products enhanced by LaB6

    Get PDF
    A direct fabrication technology (DFT) without smelting has been developed for fabricating sophisticated high speed steel products with low pollution, near-net shaping and short process. The steel consisting of (wt.%): 6.4W, 5.0Mo, 4.2Cr, 3.1V, 8.5Co and 1.28C, was fabricated as exemplary material. The activated and reactive sintering of green compacts under vacuum with low activation energy, redox reaction enhanced diffusion and the construction of concentration gradient of alloying elements around pores, promotes the nearly full densification (>\ua099.40%). Also, the DFT steels show high purity and superior mechanical properties. Minor strengthening agent LaB (0.1\ua0wt.%), which is easily to be accurately introduced in DFT, obviously increases the hot hardness, temper resistance, bend strength and toughness of DFT M3:2. The strengthening effect of boron atoms and La-rich complexes are proposed to directly result in the high hot hardness and temper resistance of LaB containing steel

    Inferior plant competitor allocates more biomass to belowground as a result of greater competition for resources in heterogeneous habitats

    Get PDF
    Nutrient heterogeneity in soil widely exists in nature and can have significant impacts on plant growth, biomass allocation, and competitive interactions. However, limited research has been done to investigate the interspecific competitive intensity between two clonal species in a heterogeneous habitat. Therefore, this greenhouse experiment was conducted with two clonal species, Phragmites australis and Scirpus planiculumis, exposed to heterogeneous and homogeneous patches of soil nutrients at five different planting ratios (0:4, 1:3, 2:2, 3:1 and 4:0), to assess the effects of both soil heterogeneity and interspecific competition on plant growth. It was found that soil nutrient heterogeneity significantly enhanced P. australis’ interspecific competitive capacity and biomass by promoting a 20% increase in belowground allocation. Interestingly, the planting ratio did not affect the magnitude of this net outcome. In contrast, the superior competitor S. planiculumis did not exhibit significant change of growth indicators to the heterogeneous soil patches. These findings imply that the uncertainties associated with human-induced redistribution of plant species may lead to a shift in dominance from other species to those like P. australis, which have strong nutrient foraging abilities in response to heterogeneity in emergent wetland plant communities

    Cardioneuroablation for successful treatment of symptomatic bradycardia in a 12-year-old child after a 6-month follow-up

    Get PDF
    BackgroundCardioneuroablation (CNA) is recognized as a promising therapeutic option for adults with severe symptomatic bradycardia caused by excessive vagal tone. However, no pediatric cases have been reported to date. Therefore, the aim of this study is to evaluate the feasibility and efficacy of CNA in children.MethodsA 12-year-old male patient was hospitalized with symptoms of fatigue, palpitations, and syncope for more than 2 months, and was definitively diagnosed with functional sinoatrial node dysfunction by using a 12-lead electrocardiogram, 24-h Holter monitoring, loading dose of atropine test (0.04 mg/kg), and treadmill exercise test. Simultaneously, whole-exome sequencing was performed on the child and his core family members. After completing the preoperative examination and signing the informed consent form, the child underwent CNA therapy.ResultsFirst, the electroanatomic structures of both atria were mapped out by using the Carto 3 system, according to the protocol of purely anatomy-guided and local fractionated intracardiac electrogram–guided CNA methods. Then, the local fractionated intracardiac electrograms of each cardiac ganglionated plexus (GP), including the GP between the aortic root and the medial wall of the superior vena cava, the GP between the posterior wall of the coronary sinus ostium and the left atrium, the GP between the anterior antrum of the right superior pulmonary vein and the superior vena cava, the GP in the superolateral area around the root of the left superior pulmonary vein, the GP around the root of the right inferior pulmonary vein, and the GP around the root of the left inferior pulmonary vein, were used as targets for ablation at a power of 30 W with an ablation index of 350–400. At a 6-month follow-up, the child's heart rhythm saw a complete restoration to sinus rhythm and clinical symptoms disappeared.ConclusionThe first application of CNA in a child with symptomatic sinus bradycardia was achieved with better clinical outcomes. CNA can be carried out cautiously in children under suitable indications
    • …
    corecore